This project analyzes alcohol-specific deaths and causes of death data to uncover trends, generate insights, and build predictive models. The project workflow includes data preprocessing, exploratory data analysis (EDA), visualization, and modeling.
You can view the live project results and additional resources here:
🔗 Trends and Future Prediction 🔗 Exploring through Visualizations
The repository is organized into the following folders and files:
Alcohol-Mortality-Analysis/
├── code/ # All R scripts for the project
│ ├── dataPreprocess.R # Script for cleaning and preprocessing the data
│ ├── dataAnalysis.R # Statistical and predictive modeling analysis
│ ├── Visualisations.R # Script for generating visualizations
│ ├── modeling.R # Script for building predictive model
│ ├── runScripts.R # Script for running all the above scripts
├── data/ # Data used for the project
├── notebooks/ # Jupyter or Google Colab notebooks
│ ├── Alcohol_Mortality_Notebook.ipynb # Main notebook for running the project
├── README.md # Project overview and details
├── LICENSE # License for the project
if (!require("openxlsx")) install.packages("openxlsx")
if (!require("plyr")) install.packages("plyr")
if (!require("reshape2")) install.packages("reshape2")
if (!require("randomForest")) install.packages("randomForest")
if (!require("ggplot2")) install.packages("ggplot2")
if (!require("dplyr")) install.packages("dplyr")
if (!require("tidyr")) install.packages("tidyr")
source("code/runScripts.R")
pip install notebook
notebooks/ folder and open Alcohol_Mortality_Notebook.ipynb:
jupyter notebook notebooks/Alcohol_Mortality_Notebook.ipynb
The following R packages are required for this project:
openxlsxplyrreshape2randomForestggplot2dplyrtidyrInstall any missing packages using:
install.packages("<package_name>")
This project is licensed under the MIT License.